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DEFLECTION AND STRESS ANALYSIS OF THIN SOLID WINGS OF ARBITRARY PLAN FORM
WITH PARTICULAR REFERENCE TO DELTA WINGS !

By Ma~veL SteiN, J. Epwarp Anperson, and Joun M. HEDGEPETH

SUMMARY

The structural analysis of arbitrary solid cantilever wings by
small-deflection thin-plate theory is reduced to the solution of
linear ordinary differential equations by the assumption that
the chordwise deflections at any spanwise station may be ex-
pressed in the form of a power series in which the coefficients are
functions of the spanwise coordinate. If the series is limited to
the first two and three terms (that is, if linear and parabolic
chordwise deflections, respectively, are assumed), the differential
equations for the coefficients are solved exactly for uniformly
loaded solid delta wings of constant thickness and of symmetrical
double-wedge airfoil section with constant thickness ratio. For
cases for which exact solutions to the differential equations
cannot be obtained, a numerical procedure is derived. HKrperi-
mental deflection and stress data for constant-thickness delta-
plate specimens of 45° and 60° sweep are presented and are
found to compare favorably with the present theory.

INTRODUCTION

One of the present trends in the development of high-speed
airplanes and missiles is toward the use of thin low-aspect-
ratio wings. The structural analysis of these wings often
cannot be based on beam theory since the structural defor-
mations may vary considerably from those of a beam and,
indeed, may more closely approach those of a plate. In
cases where the wing construction is solid or nearly solid the
use of plate theory in the analysis is particularly valid, and
it is this type of wing which is considered in the present
report.

Exact solutions to the partial-differential equation of plate
theory are not readily obtained, especially for plates of
arbitrary shape and loading; however, a number of approxi-
mate solutions to specific problems on cantilever plates have
appeared in the literature (see, for example, refs. 1 to 7).
Of the approaches used in these references, only the one in
references 6 and 7 is readily applicable to plates of arbitrary
plan form, thickness distribution, and load distribution; thus
it 1s the most useful one for the analysis of actual wings.

In reference 6 the cantilever-plate problem is simplified by
the assumption that the deformations of the plate in the
chordwise direction (parallel to the root) are linear. By
minimizing the potential energy of the plate, the partial-
differential equation of plate theory is replaced by two

simultaneous ordinary differential equations for the spanwise
variations of the bending deflection and twist. Inreference 7
the same ordinary differential equations are obtained in a
different manner. Refinement of the analysis by inclusion
of the effect of parabolic, cubic, or higher-order chordwise
camber terms is indicated in reference 6, and as the order of
refinement is increased a corresponding increase in the num-
ber of ordinary differential equations is obtained.

In the present report, which is an extension of reference 6,
a general set of ordinary differential equations is presented
which may be used to obtain any desired degree of approxi-
mation to the deflection of the plate. These equations are
solved exactly for several cases of delta plates under uniform
load first by considering linear chordwise deformation only
and second by including the effect of parabolic chordwise
camber. Comparisons are drawn between the stresses and
deflections computed from the equations of each approxi-
mation and also with some experimental results.

The differential equations presented contain coefficients
that depend on the plan form and stiffness distribution of the
plate and on the loading. In this report, the plates con-
sidered in detail have coeflicients such that the differential
equations can be solved exactly; however, in cases for which
exact solutions cannot be obtained a numerical procedure
must be used. One such procedure is derived and its
accuracy is demonstrated.

SYMBOLS

l length of plate measured perpendicular to root
¢ root chord of plate
P lateral load per unit area, positive in z-

direction
t local thickness of plate
tas average thickness of plate

3
D local flexural stiffness, Ef—t_-;%
D flexural stiffness based on average thickness,
Et,?

12(1—p?)
K modulus of elasticity of material
i Poisson’s ratio
w deflection of plate, positive in z-direction

2, Y, 2 coordinates defined in figure 1

1 Supersedes NACA TN 2621, “Deflection and Stress Analysis of Thin Solid Wings of Arbitrary Plan Form With Particular Reference to Delta Wings” by Manuel Stein, J, Edward

Anderson, and John M. Hedgepeth, 1952,
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Fieure 1.—Coordinate system used in the present analysis for a canti-
lever plate of arbitrary shape with arbitrary thickness variation.

@n function of z, coefficient in power series for
Z\T
deflection w=>" ¢, (x)y™
n=0

(), ca(x) functions defining plan form (see fig. 1)

2 variable obtained by transformation Ilzl——l
Oz, Oy normal stresses
Toy shear stress
G maximum principal stress
. l /3
A aspect-ratio parameter, V3 (1—uw)

RESULTS

The derivation of the general set of ordinary differential
equations is given in appendix A. The general procedure
outlined in reference 6 is followed; that is, the deflection
of the plate w is expanded into a power series in y the chord-
wise coordinate with coefficients which are functions of
the spanwise coordinate (see fig. 1)

w=gx)+ o1 @)y T e(2)y*+ . . . +on(@)y” (1)

Equation (1) is substituted into the expression for the po-
tential energy of the plate-load combination which is in
turn minimized by the calculus of variations with respect
to each of the coefficients ¢,. The results of the variational
procedure appear as N-+1 simultaneous differential equa-
tions with the coefficients ¢, as unknowns.

By taking a sufficient number of terms in the expansion
of w, the resulting differential equations can be used to ob-
tain any desired degree of accuracy in the solution for the
deflections of any given cantilever plate subjected to an
arbitrary lateral load. Of most interest, perhaps, are the
particular cases for N=1 and N=2, which are obtained
from the general set of equations and are simplified in
appendix A. The case for N=1 (also derived in refs. 6
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and 7) includes linear chordwise deflections, and the case for
N=2 takes into account parabolic chordwise curvature.
Although for most practical problems the solution by the
parabolic theory should be adequate, cases might exist in
which cubic, quartic, or even higher-order chordwise terms
should be included, depending on the convergence of the
series for the configuration considered.

The particular equations for N=1 and N=2 are used to
determine the deflections and stresses of the following can-
tilever plates subjected to uniform lateral load:

(1) A 45° delta plate of uniform thickness

(2) A 60° delta plate of uniform thickness

(3) A 45° delta plate of symmetrical double-wedge airfoil
section with constant thickness ratio

Fortunately, for these configurations, the solution can be
carried out exactly by both the linear and parabolic theories,
and the details of these exact solutions are included in
appendix B. In general, however, exact solutions cannot
be obtained and some numerical method must be used.
One such method, based on replacing derivatives by their
first-order-approximation difference forms, is derived in
appendix C.

A summary of the results for the three particular problems
is shown in figures 2 to 11. Deflections obtained by the
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Freure 2.—Deflections of a 45° delta plate of uniform thickness
uniform load.
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linear theory and the parabolic theory for the three con-
figurations are compared in figures 2, 3, and 4. Stresses
obtained by the linear theory and the parabolic theory
for the three configurations are compared in figures 5, 6,
and 7. Where available, experimental deflections and
stresses are also shown in these figures. The details of the
procedure used to obtain the experimental deflections of
the 45° and 60° uniform-thickness plates and the experi-
mental stresses in the 45° uniform-thickness plate are con-
tained in appendix D ; whereas the experimental root stresses
for the 60° uniform-thickness plate were obtained from
reference 8. Figures 8 to 11 present the comparison be-
tween deflections and stresses computed from the exact
solutions of the differential equations and those computed
from the numerical solutions of the same equations.

DISCUSSION

The results shown in figures 2 and 3 indicate that, with
regard to deflections, either the linear theory or the parabolic
theory is adequate for the case of a constant-thickness delta
plate subjected to a uniform load, the comparison being some-
what better for the 60° plate than for the 45° plate. If
accurate slopes in the chordwise direction (angle of attack)
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Fraure 3.—Deflections of a 60° delta plate of uniform thickness under
uniform load.

are desired, however, the parabolic theory must be used
because the error in the angle of attack as computed by the
linear theory is as much as 30 percent (see figs. 2 and 3).
The appreciable anticlastic curvature, evidenced by the
experimental results of figures 2 and 3, may be important
aerodynamically and is, of course, not taken into account by
the linear theory.

The apparent convergence of the aforementioned series
in the case of the double-wedge-section plate (see fig. 4)
implies that the linear theory is adequate for this case. The
lack of chordwise curvature in the result obtained by the
parabolic theory is attributable to the fact that the natural
tendency of the plate to have anticlastic curvature is canceled
by the opposite tendency of the thin edges to bend down
under the load. Unfortunately, no experimental results
are available for this configuration.

In figure 4 the plate stiffness D in the nondimensional

parameter wD/pl* is the local value of D at a point where
the thickness is equal to the average thickness of the plate
as a whole. Thus the results of figure 4 are comparable
with the results of figure 2 on an equal-weight basis. Tt
can be seen that the deflections of the double-wedge-section,
constant-thickness-ratio plate are everywhere less than
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Fieure 4.—Deflections of a 45° delta plate of symmetrical double-
wedge airfoil section and constant thickness ratio under uniform load.
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those of the uniform-thickness plate although they increase
rapidly near the tip. This curling-up or singularity in slope
at the tip is a result of using a small-deflection theory and
probably would not be so marked in an actual case.

The stress results for the 45° and 60° uniform-thickness
delta plates indicate that both the linear and the parabolic
theories are adequate and that the parabolic theory is better
than the linear theory only near the root. It should be noted
that, although the maximum principal stress over a large
part of the 45° plate is plotted in figure 5, only the stresses
7=0.0087 of the 60° plate
are plotted in figure 6 since only these stresses are given in
reference 8. (The maximum principal stress and the stress
normal to the root are theoretically equal at the root since
the root shear stress is zero.)

Experimental data are lacking for the double-wedge-section
delta plate and, therefore, only theoretical stresses are shown
in figure 7. Asin the case of deflections, the results obtained
from the linear theory and those obtained from the parabolic

normal to the root along the line

theory are almost coincident, the difference being greatest

near the root. Figure 7 has also been plotted so that the
results are directly comparable with those for the 45°
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Freure 5.—Maximum principal stresses in a 45° delta plate of uniform
thickness under uniform load.

uniform-thickness plate in figure 5 on an equal-weight
basis. As can be expected, the double-wedge-section,
constant-thickness-ratio plate is a better design structurally;
the stresses in the double-wedge-section plate are everywhere
smaller and are almost constant in the spanwise direction.

The theoretical results in figures 2 to 7 have been obtained
from exact solutions of the differential equations of the
linear and parabolic theories. In order to test the reliability
of the numerical method derived in appendix C, the differ-
ential equations were also solved numerically. The results
shown in figures 8 and 9 indicate that the agreement is good
between the numerical solution in which five equal intervals
were used and the exact solution of the differential equations
for the case of the 45° uniform-thickness plate. The same
good agreement can be expected in other cases where the
thickness and load distributions are not too erratic and where
the plate stiffness does not go to zero at the tip—that is,
when no singularities appear at the tip.
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Frcure 6.—Normal-stress distribution near the root (at %=0.0087> of

a 60° delta plate of uniform thickness under uniform load.
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Since the efficacy of the numerical method depends on
how well parabolic arcs fit the various functions between
stations, serious error can result from blind application. An
example of the seriousness of these errors and of the manner
in which they can be remedied is shown in figures 10 and 11.
In these figures a comparison is made between exact and
numerical results obtained on the 45° double-wedge-section,
constant-thickness-ratio plate. As can be expected, the
five-station numerical solution fails to follow the exact solu-
tion in the neighborhood of the singularity at the tip. Since
the region of trouble is localized at the tip, a reasonable
remedy would be to decrease the spacing of the station points
near the tip. This decrease in spacing may be accomplished
either by using a greater number of equally spaced stations
or by using unequally spaced stations crowded near the tip.
The increase in accuracy obtained by increasing the number
of equally spaced station points to ten is shown in figures
10 and 11.

CONCLUDING REMARKS

The general method presented herein for finding deflec-
tions and stresses of solid or nearly solid wings is, in principle,

2.0 | l

—r—

. 4

=

F”.“

ol .
v |- —— — Linear ) } eo
pl Parabolic

154

y

0
N /
N
=45 2 4 6 8 10

yrc
Ficure 7.—Maximum principal stress in a 45° delta plate of symmet-
rical double-wedge airfoil section and constant thickness ratio under
uniform load.

capable of yielding arbitrarily accurate results for any con-
figuration. It is seen that, for the examples considered,
only the first two or three terms in the series expansion need
be considered to obtain adequate accuracy. In addition,
for most practical plate-like wings with clamped roots the
first two or three terms will probably be adequate, although
problems may exist wherein more terms are needed.

The numerical procedure, derived for application in cases
where exact solutions cannot be obtained, gives good agree-
ment when compared with exact solutions if enough stations
are taken along the span. The necessary number of stations
is dependent on the type of thickness and loading distribution
considered, five equally spaced stations being enough for
the uniform-thickness delta wing subjected to uniform
loading and ten being necessary for the double-wedge-section,
constant-thickness-ratio delta wing subjected to uniform
loading.

LANGLEY AERONAUTICAL JiABORATORY,
NarroNaL Apvisory COMMITTEE FOR AERONAUTICS,
LaxcLeY Fierp, Va., November 30, 1951.
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FIiourE 8.—Numerical and exact solutions of the differential equations
for the deflections of the free edges of a 45° delta plate of uniform
thickness under uniform load.
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(obtained by assuming linear chordwise deflections) for the deflec-
tions along the free edges of a 45° delta plate of symmetrical double-
wedge airfoil section and constant thickness ratio under uniform load
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tions (obtained by assuming linear chordwise deflections) for the
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plate of symmetrical double-wedge airfoil section and constant

thickness ratio under uniform load.

APPENDIX A

DERIVATION OF DIFFERENTIAL EQUATIONS

The structure considered herein is a thin, elastie, isotropie,
cantilever plate of arbitrary plan form and slowly varying
thickness subjected to distributed lateral load (see fig. 1).
By assuming that the deflection of the plate can be repre-
sented by a power series in the chordwise coordinate and
by applying the minimum-potential-energy principle, a set
of ordinary differential equations in the spanwise coordinate
is obtained from which the coefficients of the power series
may be determined. First the general set of equations is
derived; then the particular equations for the cases of linear
chordwise deflections and parabolic chordwise deflections are
deduced from the general set and simplified.

266368-—54——2

General equations.—The potential energy of the system
under consideration is

c2(z) :r ) O*w o*w
3 T — .
'} otential energy J JCI o { 5 l:( > (Z)v/ ) +

O%w 027
H2227d y?

in which

2 — i) (bx by) :IMp(x,y)w} dydx (A1)

Efiz,y)’
12(1—p?

D(wa):

and p(z,y) is the distributed lateral load.
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The assumption is made that the deflection w can be represented by the power series
N
= Z Pn (95)2/" (AQ)
n=0
Substitution of this expression for w into equation (A1) gives

*
Potential energsz dx{ 2 Z[am+n+]<pm e/ Fmn (m—1) M—1)Apyn_30m ©at
0

m=0 n=0

2un (n— 1)@ pyn_10n" €0 t+21 —wW)MNCy n—100"¢4] _20 pn+1¢’n} (A3)
=
in which

¢ ()

a,=f 2() Dayy 'dy  ¢=1,2,...2N+1)
¢ (7.

) (A4)

c2(z)
pr:fclm pz,y)y " dy (r=12,...N+1)

and the primes denote differentiation with respect to .
Minimization of the potential energy by means of the calculus of variations gives

d(Potential energy)=0

N N
~J‘ dx {2 Z Z a'm+n+1(€0m 59971’,+80n,,6§0m”)+7nn( _1> (7!:— l)afern—s(‘Pma‘Pn_{—@naﬁam)'{_

m=0 n=0
J\"
Q}Ln(ﬂ— l)a’m+n—-l(¢m”5§0n +§0n5€0m”)+ 2(1 - /-")Wlna’m-{»n—1(‘!’m16¢nl+§0n,6§0m,)] _ZO Put1 5§Dn}
n=

Integrating by parts and collecting terms results in

0=J d it Z 5‘4071 {Z ((Lm+n+1gpm,’)ll+p7n (m~ 1) (a'm—i' 'l*1¢m)/,— 2 (1 "“) mmn (am+n—-1§0m/),+#n (n_ 1) a'ernflﬂomH_"'

m=
N N

mn ('m,'— ]) (’I’L— 1) Apmyn—3 ¢m]_pn+l§ + {ZO 6‘Pn, Z() [(I/m-§~n+1€0m”+l-‘7n’ (WL— 1) am-{-n-—I‘Pm } {Z 8¢n Z [(anH n+1Pm ) +
n= m=

m=

: l
pin (m - 1) (am+rz—1 Qam)/‘ 2 (1 —F’) MmNy, -1 59"&’]}0 (A5)

Everywhere in the region of the plate, except at the boundary z=0, the variation of w is arbitrary. At 2=0 the
cantilever boundary conditions

ow

=37="0

yield
‘Pn(O):‘Pn,(O):O ('n:,()! ... AT) (Aﬁ)

and therefore the variation in these quantities must also be zero at x=0.
Equation (A5) is then satisfied if, in addition to equation (A6),

N
E_ [(@miniron”)”+pm(m—1) (a'm+n—1<Pm)”“2(]"ﬂ)mn(am-l-n~1‘ﬂm’)/+I“n(n_1>am+n—l¢m”+

mn(m-—1)n—1)Cnin_30n] =Dut1 (n=0,1,...N) (A7)
MZ)O[am+.n+l<p."L”+ynL(m~l)am.+,l_1gam]2:l:O n=0,1,...N) (AS)

and
ﬁ (@ s 100" 1m0 —1) @t 100) —2(1 = WMy 100"l =0 (=0,1,...N) (A9)

Equations (A7) form a set of N+1 simultaneous ordinary differential equations for the functions ¢,(2). The functions ¢,
are completely determined by these differential equations and the boundary conditions (A6), (A8), and (A9).
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Particular case of linear chordwise deflections.—If
N=1, the deflection function becomes

w=go+Ye1 (A10)

a linear function in the chordwise direction, where ¢, is the
bending deflection and ¢, is the twist. Equations (A7)
become

(aip0’”)"" + (azer”")" =py

(@2@)’,)”‘*‘ (aggal")”—iz (1 — p) (alSOI/) ’ =Py

(A11)
(A12)

The root boundary conditions, given by equation (A6),
become

¢0(0) = ¢y’ (0) = ¢1(0) =¢," (0) =0 (A13)

The tip boundary conditions, given by equations (A8) and
(A9), become

(@@ +aap)") 2= 1=0 (A14)

(@200 +ase)"") 2= 1=0 (A15)
[(a1e0”") + (@21”") )= 1=0 (A16)
[(@20y”") + (aze”) —2(1— W) t101"]2- =0 (A17)

Equations (A11) to (A17) are the differential equations and
corresponding boundary conditions presented in reference
6 (if only distributed load is considered) where the symbols
W and 6 are used instead of ¢, and ¢y, respectively.

If equation (A11) is integrated twice and the boundary
conditions (A14) and (A16) are used,

s 1 (" ,
gOOII:____ ¢1Il+_fj pl d.,nz
Az Jz

a. (A18)

Substitution of ¢'” into equations (A12), (A15), and (A17)
gives

2 14 144
(blgo/'>"—2(1—u><a1¢1'>':p2—(§f f f pldm‘l) (A19)

(bier")z=1=0 (A20)
[(blsolu)"‘z(l‘#)aliplllx:L:O (A21)
in which
2
bl :(Lg_c;il

- If equation (A19) is integrated once and the boundary
condition (A21) is used,

{ l 7 ’
(bl¢1”)’—2(1~—u)algo1':-—f P2 (lz—<2—jf fpl dav2> (A22)

The differential equation (A22) is a second-order differential
equation in ¢,”. The twist ¢; and then the bending deflection
@ are obtained by solving equations (A22) and (A18), respec-
tively, by applying the boundary conditions (A13) and (A20).

Particular case of parabolic chordwise deflections.—The
effect of parabolic chordwise camber may be included by

letting N=2 in the general power series (eq. (A2)). If N=2,

the deflection function becomes

W= eyt yier

Here ¢, represents the spanwise distribution of parabolic
chordwise camber. For this case the differential equations
(A7) become

(aro0”)" + (aze”)” 4 (az0:” )" +2u(a, @)" =p1 (A23)
(@200")" + (asey”)” + (a40y") " +2u(ta0)” —
20—wl(ae) +2(a2ey') 1=p.  (A24)

(as00”)" + (aser”)" + (a502”)” +-2plaip0” + 1" + a3, -+
(@302)"1—4 (1= w)[(a201")" +2 (a30y) 1 +4 15 =DPs
with the boundary conditions

20 (0) =gy (0) =1(0) =0, (0) =2 (0) =" (0) =0 (A26)

(A25)

(@0 + 201" + 50" 4 2u0102) 1y =0 (A27)
(200" + 301" + 30" +2ua302) s =0 (A28)
(@s00” + ap1” + 505" +-2u305) o 1 =0 (A29)
[(a100") 4 (a201") "+ (@30,") +2p(a102) ' 1,- =0 (A30)

[(a200”)" + (aser”) + (Aap2") +2u(arpy) ' —
2(1—p) (e +2a:0,")],- =0 (A31)

[(a300”)" + (@ser”) + (as02") 4 2u(asps) —
4(1—w) (@201 + 2030, ) ;.1 =0  (A32)

It equation (A23) is integrated twice and the boundary
conditions (A27) and (A30) are used,

” Q2

Lo — ——

//_9_3 ”__ _1_ " 2 <
o ¢ g e 2“¢2+(1,1L L pda®  (A33)

Substitution of ¢,” into the remaining differential equations

and boundary conditions results in

(b1¢1")" +(bagr”)" —2(1 — ) [(a11) +2(020,")’]

Iy P
=p2—<@ffp1 dxz> (A34)
a1 Jz Jz

(b20:")"4-(bser")" — 4(1 —p) [(az¢) +2(as02) |+ 4(1 — D 2

=p3—2u frlJ;l'pl (iﬂ——(%frlf: P (lx2>” (A35)

(11" 40202 ) 2 1=0 (A36)

[(bie") 4 (baga”) —2(1—p) (1) +222") ], =0 (A37)
(boer” +b302" ) z=1=0 (A38)

[(ogi”)" + (bsge”) ' — 4 (1— ) (arp” +2a30.) ], =0 (A39)

1(0) =" (0) = :(0) = @’ (0) =0 (A40)
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in which
2
by :a/g—-%%
by=a,— "%
ay
bgzas—a—'f

a

If equation (A34) is integrated and the boundary condition
(A37) 1s used,

(b1 +(bre”) —2(1 —u) (a1 +2a,¢,")

1 a, (! ’
=~—f D2 dx——(—a—‘f f D dﬁ) (A41)
z 1 z z

Thus ¢, and ¢, are obtained by solving equations (A35) and
(A41) with the boundary conditions (A36), (A38), (A39), and
(A40). Subsequently, ¢, can be obtained by solving equa-
tion (A33) with the boundary conditions ¢,(0)=¢, (0)=0.

Stresses.—After the approximate deflection of the plate
is determined from equations (A18) and (A22) or from equa-
tions (A33), (A35), and (A41), the extreme-fiber stresses may
be calculated from the well-known equations of thin-plate
theory, which are (see, for example, ref. 9):

_6D (2w, ow
2= o2 TH oy?

6D [O*w o*w
= Loy o

_6(1l—wD ow
T =g oz Yy

The maximum principal stress ¢ at any point in the plate
can be determined from

o= g%’ﬂ + % V/(‘Tx”;}y)z + 4Tx112



APPENDIX B

EXACT SOLUTIONS OF DIFFERENTIAL EQUATIONS FOR SOME SPECIFIC DELTA-PLATE PROBLEMS

The differential equations of appendix A for linear and
parabolic chordwise deflections are solved exactly for uni-
formly loaded delta plates of constant thickness and of sym-
metrical double-wedge airfoil section with constant thickness
ratio. The equations for deflections obtained by the linear
theory are presented in terms of the aspect-ratio parameter
M for both kinds of delta plates. The equations for deflec-
tions obtained by the parabolic theory are presented for

3 ..
£=1 and ‘—33- with pz—;— for the constant-thickness delta plate

and for El =1, also with 'u—_-%, for the delta plate of symmet-

rical double-wedge airfoil section with constant thickness
ratio.
If the z-axis is passed through the edge perpendicular to

the root and the substitution ;=1 —% is made, the differen-

tial equations are clearly of the homogeneous type for which
the solutions are of the form 2,7, where v is a constant. For
the configurations considered, the functions that define the
plan form (see fig. 1) are then ¢;(x)=0 and ¢.(x) =cz:, where ¢
is the root chord. In all the equations of this appendix the
primes denote differentiation with respect to the new inde-
pendent variable ;.

DELTA PLATE OF UNIFORM THICKNESS UNDER UNIFORM LOAD

Since the stiffness D is a constant for uniform-thickness
plates, the coefficients in the differential equations (see eq.
(A4)) become

an:p;:_’i " (B1a)
h=a— B0 (BL1b)
by= 4~%%3 —Il)g— ! Ble)
3:%—%?:%%@ o B1d)
pn_l?ff x" (Ble)

Solution for linear chordwise deflections.—If the co-
efficients given by equations (B1) are substituted into equa-
tions (A22) and (A18) and the independent variable is

changed to xlzl—% the following equations for linear

chordwise deflections result:
4

pl
(x13¢1”)"— 16)\2I1¢1,: —92 m 3 (B2)
4
of =g mel {0 (B3)

where

1 /3, |
rA=s4/50 —u)

The boundary conditions to be used with these equations are
obtained from equations (A13) and (A20) and are

eo(D)=a/(N=gi(1)=g/(1)= (B4)
(1*13901”)11=0:O (B5)
The general solution of equation (B2) is
o, 2 mit
(Pl/:/‘111171‘)'_l"{“‘/"lg.'l','l-”Y_I—~ 1 pl (BG)

4(1—2\) De
where
= 1-F16\2

and A; and 4, are arbitrary constants. Since M is inherently
positive, the boundary condition (B5) requires that A,=0.
One integration of equation (B6) and the application of the
conditions ¢;(1)=¢,"(1)=0 yields

o 1 p_ﬁ ./1)17*“1_.%13—"1)
P4 —2\Y) Dc( e 3 BD
If equation (B3) is solved for ¢, with the conditions
(1) =gy’ (1) =0, the result is
S L 2 < _ __,,7_>_
P=gD 1= 2>\2[9 G- (1-2
r—1 (1_ J"‘“’“)] BS)
Y

Substitution of equations (B7) and (B8) into the equation

w= ¢+ Yo

gives the expression for the deflection w of the plate under
the assumption of linear chordwise deflections.

Solution for parabolic chordwise deflections.—If the co-
efficients given by equations (B1) are substituted into equa-
tions (A41), (A35), and (A33) and the independent variable
is again changed to mlzl—%: the following equations for

11
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parabolic chordwise deflections result:
4

pl
(@ler”") - (x1tcpy’)’ — 162 (xie)/ + 220y )= — D 8
(BQ)

16 N 4
(rite")" 4 15 (xPee,’”) — 162 [(x12<p1’) +§ (x1%ces )/:l+

1 .
fgkﬁj¥wa“—‘('*mﬁ DY s (B10)
[*
o' ==t =S e —2ultg, +055 B

The boundary conditions to be used with these equations are

eo(D=e/(D=0i()=0' (1) =¢(1)=¢,'(1)=0 (B12)

(1'13<P1”+3714C€02”)xl=0‘—“0 (B13)
(zvtor 415 aiees”) =0 B14)

[(Tl e’) +1 = (z1°cp’) —16\? (7'1 @1 +* zico, ):l o
(B15)

The homogeneous solutions of the simultaneous equations
(B9) and (B10) are of the form

:A;L‘I'Y_l
¢2=Bx,7!

Substitution of these expressions into the homogeneous parts
of equations (B9) and (B10) leads to the following charac-
teristic equation from which A may be determined:

Yo 6(1 -+ 16)\2)7‘—+—[320 <4+ifz> >\4+480>\2+9:]'y2—

[1280 715”‘ N80 (4+1+“> NF96NT -1 ]—
B16)

and gives the following relationship between A and B:

~2)(+ )= 1637
v —1— 16\ ]"B

A=—G-p[ "

The particular solutions for uniform loading are given by

501,:/1,“%12

@2231)112
where
3u+71 2—u
1 1 l—p —2 1— >\ +1 plt
y zf‘a - - ,
2 }“(w DA — (8)("—1)(4)\‘ y e
“Ar (2N — 1)+ 144\2 .
1 pl
1)—_"“*** """ - .2
48]+“ (zv DN (83— Dt 1) Pe

The general solution is the sum of the homogencous solu-
tions and the particular integral

6
ol =23 A,y T A x,
n=1

6
QDQZZ_:{an]‘Y”iI—i—];ﬂIlQ (Bl?)

where the values v, are the six roots of the characteristic
equation (B16) and the coefficients A4, and B, are the co-
efficients corresponding to each of these roots. After inte-
gration ¢; becomes

n o 3 b
ga_ZA “; +A],£31—+Aq

n=1 n

B18)

The general solution for ¢, from equation (B11) is found
to be

6
¢0:Z-‘iOnélfl'ynﬂu“*‘opxl*%‘qul"l“or (Blg)
where, for n=1,2,. . . 6,
4 n 4 X
R A +1) {7 5 Aty l}“ Wra—2)+ ~ :IB}
and

_ 2uN’ pl*
01)_ 19[Aﬂ+ (1+ ) » ’GDc]

The coefficients A4, to 4, A,, C,, and €, must be determined
by the boundary conditions (B12) to (B15).

A complete set of coefficients is given in the following table
for delta plates with Poisson’s ratio u equal to 1 /3 and with

—
l o, .
A=-=1 and ¥ 5 Deflection curves plotted from these
¢
results are shown in figures 2 and 3 in which the 45° plate
—
{ ° { \f’3
corresponds to E:l and the 60° plate corresponds to —=Y".
¢
b De De2
I Ym Am I’)H‘ Bm p”' Om P[‘
m N T e —
e oy 3 5
N N L N P L W W ) A=1 A=YV3
t 3 3 3
1 2, 7034 1.5671 | 0.7378 0.09632 | —0.3133 | —0.1022 |—0.02931 [—0. 003223 i
2 4. 9437 3. 6347 . 02411 . 3707 —. 03039 | —.4313 . 003074 . 01347 ‘
3 8. 3816 4,7258 03827 |—. 1766 —. 006293 .07379 - 000486 .002317 |
4 1—-2.7034 {—1.5671 | 0 0 0 0 0 0
|5 | —4.9437 1 —-3.6347 | 0 0 0 0 0 0
6 [ —8.3816 |—4.7258 | 0 0 0 0 0 0
22 I R —. 8000 |—.2903 . 3500 . 4597 . 04167 .004032 |
[/ U R —. 015857 | —. 02024 | ____._ | ..__.__.| —.07152 —. 08354 |
| O U E ' U R R, . 05668 . 06692 i
] S . — B

Substitution of equations (B17), (B18), and (B19) into the
equation
w=go+yo+y’p:

gives the expression for the deflection w of the plate under the
assumption of parabolic chordwise deflection.
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DELTA PLATE OF SYMMETRICAL DOUBLE-WEDGE AIRFOIL SECTION WITH / » Iy ar . FlQo Qant] - N roa .
O T A e (A18) for lincar cho‘xdvnsc deﬂe'(,tlons may be solved for ¢,
. o and ¢o. The steps in the solution are the same in form as
For a delta plate of symmetrical double-wedge airfoil | those for the uniform-thickness plate and the resulting
section with a constant tl]ickness ratio the thickness is a equations are
function of z and ¥ and is given by the following equations:
_ ¥ e —x, 72 pl
t= 61, . (0 SYs D) > 13 +log, x; s B21)
27 <'y N\ =2 De
. 1 cx 2
=061, <11—2/> <i_)'"l'§y§(/'$1> and
. . N . 5
where 7, is the average thickness. From these expressions 1 r 20 T—5{ ., P%ﬁ 1
for the thickness the stiffness can be found and the coeffi- 1 =5~ g 3 = 41— 4+
cients in the differential equations become L‘y 3775 7—-§
0220 )
I 20 2 [
- 4
b WAL (21 log, 1+ 1— ) % B22)
Ayr=— 8 - £y v — i
9Dc? where
TGy="" £y YA
5 r=y(3) o
81 D¢t 7
47 o
80 Solution for parabolic chordwise deflections.—By use of
2673 D¢ the coefficients given by equations (B20), equations (A41)
azg=""l2TC s (B20) ’
754480 ! (A35), and (A33) for parabolic chordwise deflections may be
0 et solved for o1, ¢;, and ¢,. The steps in the solution are
1:-)_7}7 v again the same in form as those for the uniform-thickness
80 plate and the resulting general expressions for o1, @2, and
9Dc* @p are
bz; 80‘ £y 3 .
LEI T2—1 P
2613D¢> %01*2 Ay = 5 4, log,2, B23)
7 20400 Ty
_pet 5
pPp="-- : 1
I n ' p, ‘P>—Z Bz, 2+Bp ? (B24)
n=1 1
Solution for linear chordwise deflections.—By use of the ] .
coefficients given by equations (B20), equations (A22) and %:”Z:]l Croa"" 240z, log, 2, +C g +0, (B25)
where the exponents v, are the roots of the characteristic equation
2 871/, 25\ [, 49 )() gr (e 25Y 320 1w, 2(,_, 25 L\
(=500 [S0 (=) (4 v (=) M 4"8‘“>+
2
[ ('y —=2 200)&’] —0 (B26)
Forn=1,2,...6, 4,, B,, and O, are rclated by
()
v’ -————80)\'

B,=

l\Dg <

’Y!L

IL

( ‘J[(* 2><7+2) 8”] <
e[ 0D
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For uniform load the coefficients in the particular integrals of cquations (B23), (B24), and (B25) are

L0 it }j_lz N—16 <5+’1%u v) (10N24-1)
A”ZQ_;ﬁ 871 1+“ R
C(20>\ +1) (S-+10243 4320 | x) 120 (16M24-1) (10A24-1)
\ L5(L6N+ 1)—2(203 1) (5+ 2“)
B 40 pl* -
P
27 D¢t (90v+1 871 24390 1+"‘ x) 120 (1634 1) (10N 1)
y ¢ 9 “)‘ 2 pl
Cr=g =iz (145 B ) Bt =

The coefficients 4, to A, A,, C,, and C, are again determined by the boundary conditions (A26), (A36), (A38), and (A39) in
which the coefficients given by equations (B20) are substituted.

For Poisson’s ratio x equal to % and )\:E:l’ the solution of the characteristic equation (B26) leads to two real values and

two pairs of complex conjugate values for y. The identity

"+ =1 cos (blog, 2,) £iz,% sin (b log, x,)
was therefore used to transform the terms involving the complex conjugate values into real form. 1f rézl and ,u:§: the
solution is

@2= IZ;Z 0.0040702,**"—0.0043632,° " cos (2.825 log, z,) +0.006893x,% % sin (2.825 log, x;) +0.000294 ;U]—jl
c? 1

4
gp]:%l— [—0.003896:171“-"474*0.002134%9075 cos (2.825 log, 2;) —0.006381x,°% sin (2.825 log, x;) -+ 0.01794 log, xl+0.001763]
¢

@o= 2;; I:O 00077152,>*7—0.0000708z,'*- cos (2.825 log, #;) +0.0012342,"°% sin (2.825 log, ;) +

0.033312, log, x;—0.04096x,+ 0.04026]



APPENDIX C
NUMERICAL PROCEDURE FOR SOLVING DIFFERENTIAL EQUATIONS

In cases where the equations of the present theory cannot
be solved exactly a numerical method must be used. In
this appendix, equations (A19) and ecquations (A34) and
(A35) are set up in difference form for numerical solution.
Initially the assumption is made that the functions involved
in the differential equations are continuous and nonsingular.
In this case, first and second derivatives can be expressed by
the standard difference forms

21/n+7/n |

77777 :y7z+l
dx*/, é

dy yn+%"yn—é

(),
where e is the distance between equally spaced station points.
In the following development five equally spaced span-

wise stations are used ; however, the extension to a different
number of stations can be readily made.

First, consider equation (A19) resulting from the linear
theory

1 3 7
(1) —2(1—p) (alﬂol,)’:p‘z‘“(%f f P1(x) dxz) =0

Because of the nature of the tip boundary conditions for
this equation, it can be conveniently put in the form

where

T=(bp") —2(1—pae’

In finding the difference equation equivalent to equation
(C1), the quantity (bie,”)’ is found in matrix form; from
this expression is subtracted the matrix equivalent of
2(1—wp)aip1’; the resulting expression for 7'is multiplied by
a differentiating matrix; and the product is equated to the
right-hand side.

The quantity (bie,’’)” at the half-stations can be expressed in matrix form as follows:

e”o 1 —2 1
e’y I —
1

”

o= 1
(2 ] &

”
@1 3

”
P14 L

—2 1 P11

PL1-1

(C2)
I =2 1 P12

I —2 1_; P13

P14

P15

where the second subscript denotes the station point, the subsnlpt at the root station being 0 and at the tip 5. The

root boundary conditions are now applied ; namely,

<P1(O) =0=¢y

P1-1

o (0)20:‘&

2e

Thus, after the values of ¢;,=0 and ¢, ;=¢,, are substituted, equation (C2) becomes

<P1”0 - 2

<P1”1 —2 1
” 1 . ¢

P12 =;‘2 1 -2

<P1”3 1
"

P14 L

Y1

P12

1 P13
—2 1 P14
=2 1dlew



16 REPORT 1131—NATIONAL ADVISORY COMMITTEE

FOR AERONAUTICS

Therefore,
(i1 o Fbm ar 2 T !‘Pu
(b1 )1 by —2 1 ‘5012
(bre1”)2 2215 br 1 =2 1 P13 (C3)
(b1g1”)s bis 1 -2 1 o1
(b1<P1”)4 L bu_J L 1 =2 IJ ‘<P15
One of the tip boundary conditions is
(0:101")2=1=0=(b1¢1")5
Thus,
(bie1")1s2 —1 1 (b1e1")o
(b1§01”)§/2 —1 1 (b1er" )1
(b1<P1”);/2 Z% —1 1 (011" (C4)
(b1¢1”);/2 —1 L [{(bie”)s
(b1<P1”);/2 —1 (b1¢1”)4
The matrix equivalent for the second term of T is
(@01 )10 (URY: 1 on
(@101 )32 1,372 —1 1 P12
2(1—w)|(arer)spe =2—(16——”) Q1,572 { —1 1 @13
(@101 )z ay, 72 —1 1 P14
(@101 )are Q1,972 —1 11 ess
Therefore T' becomes
Tip —1 1 b1y 2
Tsp —1 1 by —2 1
Tspp| = 3 —1 1 by 1 -2 1 —
Ty —1 1 b3 1 -2 1
Ty —1 by 1 -2 1
Ay, 172 1 Y1
21— Qy,312 —1 1 @12
— @y 50 -1 1 o13 (C5)
(UR —1 1 P14
Qy, 972 —1 1) |ess

The right-hand side of equation (C1) can now be equated to the derivative of equation (C5); thus,

¢ -1 1 Tip
12 __}_ —1 1 Tsp
| € —1 1 Tsp
Q14 —1 14\T7p
Tor
In order to obtain g;;, the boundary condition o

at x=[ must be used. In other words, T goes from 7y, at station 4l to 0 at station 5.

5 A straight line drawn between
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these two points would have the slope 21y
€

or

qn 1 -2 1

Q12 1 =2 1

@3 :;1:1 1 —2 1
G4 1 —2
T15/2 1

T,

qu
Q12
Q13
Qs

Q15/2

OF ARBITRARY PLAN

17

FORM

The value of ¢,; is considered to be this slope; therefore,

-

TI/Z
Tsp
T5/2
T7/2

]v9/2

1
—1 1
—1 1
Mlj
1 —
—2 1
1 —2 1
Ay, 12
@y, 372
1

Q702

1,902

1 ] Y1
—1 1 P12
—1 1 ¥13

—1 1 P14

—1 1 P15

If the matrix multiplication is carried out, the difference equivalent of equation (C1) finally becomes

where

(D]

-

r-2b10+ 4bll + bl?
—2by—2by,
biz

[ —ay, 10— 01,300

ay,3/2

11
12
Q13
GQus
Q15/2

—2b;;—2by,

by 4-4byy+-bys

—2b13—2b;3
bls

ay,3/2
— @y, 32— 01,5/2

Ay, 572

~{Z100-2022 py

by
—2b1,—2b3
bia+4bys+ by
—2b;3—2b,
bis

a1, 572
—Qy, 521,772

01,72

In order to determine ¢, from ¢;, use must be made of equation (A18)

144
@y '=—
o 1z Jz

or, by use of the boundary condition ¢,(0)=¢,"(0)=0,

r [z 1 lfl j':cj‘x a, )
= = dai— %20 da?
#o foﬁ aflfz z b 0Jo o

a.
prdat—2 o
a,

Y1
P12
$13
P14

P15

bis
—2b13—2by,
bis+4byy
—2byy

ay,7/2
— Ay, 727 Qy, 952

Q1,972

(Ce)
by
—2by4
bu |
Ay, 972
— a1,9/2_J
€7
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In matrix form equation (C7) becomes

®o1 1 1/2 1/ay, 11 1 1 17371 1t 1 1 17|py
®o2 1 1 1/2 1 1/ay, 1 1 1 1 1 1 1 1]|pe
opl=€|1 1 1 /2 1 1 1/ay 1 1 1 1 1 1f|ps |—
o4 1 1 1 1 /2 1 1 1 1/ays 1 1 1 1||pu
o5 1 1 1 1 14Lt1/2 1 1 1 1 1/ay 1 11 |pis/2
1 1/2 (@sfay)o 2 én
1 1 1/2 1 (as/ay), —2 1 o
1 1 1 2 1 1 (azfay), 1 —2 1 Q13 (C8)
1 1 1 1 /2 1 1 1 (as/ay)s 1 —2 1 P14
1 1 1 1 1Jp1/2 1 1 1 1 (@ofy)4 1 —2 11 |eis

Thus, if the values of ¢, (which can be determined numerically or analytically according to preference and feasibility) are
known, the values of ¢; can be found by solving equation (C6) and the values of ¢, in turn by means of equation (C8).

The foregoing development applies to the case where only linear chordwise deformations are allowed. A similar pro-
cedure is followed in expressing the differential equations pertaining to the parabolic theory in difference form; only the
results are shown herein.

The matrix equivalent to equations (A34) and (A35) is

(/3% H P11
Qa2 . Q12
w | |20y L Loy |,
Qs P14
05/2 I D $15 (C9)
3! P21
o2 P22
| |02y Do) ST g |,
Q24 4(1— )] E] P24
as/2] L A lees
where
2000+ 40u+ by —2b—2bs bre
=200 —2b2 bt 4betbs —20,—2b,; bus
[Cn] = brs —~2b,5—2b,3  bua 4yt ne —2b,3—2b,, bns
b —2b,3—2b,, bus+4b,y  —2b,,
b —2b,4 bus
— Ay, 120,312 Un, 312
An, 372 —lp, 32— An, 512 An, 512
(D)= Q512 = Qn, 52— An, 712 n,7/2
A, 772 T Qn72—An9r2 Anop2

(I/n,f.)/Q _an, 9/2,
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and ¢; and g, are the right-hand sides of equations (A34) and (A35), respectively; that is,

a 'l l ”
-
1 Jzr Ja
l i a; ] i 4
(Izzpa—ny f D1 dzz——<-«f f D1 d:ﬁ)
zJz a1 Jz Jz

With ¢, and ¢, known, ¢, can be obtained by use of equation (A33)

ou| [1 Iri/2 T [1/aw
el |1 1 12 1 ay
el |1 1 1 12 1 1 ¢
sl |1 1 1 1 172 1 1 1
el L1 1 1 1 1]L1/2 11 1 1| L
[~ (aafar)o 1 2
(@ofay)y —2 1
(az/ar), 1 =2
(az/ar)s
L (@s/ar)d L
[ (aa/a1)o A 2
(asfa) -2 1
(@sfar), 1 —2
(as/ay)s
- (as/ar)sd L

It should be noted that, as can be expected, the matrix
equations (C6) and (C8) are merely special cases of equations
(C9) and (C10), respectively. In addition, the square
madtrices in equations (C6) and (C9) are symmetrie, a result
that is consistent with the fact that the differential equations
under consideration are self-adjoint.

In the beginning of this appendix the assumption was made
that the functions involved in the differential equations are
continuous and nonsingular. The difference solution, how-
ever, may be adequate for some cases in which this assump-
tion is not strictly correct. For instance, the deflections of
a plate with a discontinuous stiffness distribution could con-
ceivably be not very different from the deflections of a plate

qrt 11 1 17971 1 1 1 17 |pn
1 1 1 1 1 1 1 14 |pe
1/ay, 1 1 1 1 1 1}|ps [—
1/a 1 1 1 1] ipu
l/ayu L L 11 ipis/2
1 |eu
P12
P13
1 P14
1 —2 11 |15
1 lex ©21
P22 P22
P23 —2#62 Pa3 (CIO)
1 P24 P24
1 -2 1_J P25 P25

with a continuous stiffness distribution closely approximating
the discontinuous distribution except in the neighborhood of
the discontinuity. 'The results yielded by the difference solu-
tion in this case would be those associated with the continuous
stiffness distribution. The number of stations may have to
be increased, however, in order to minimize the inaccuracy
introduced by the discontinuity or, in other cases, by a
singularity. The case of the symmetrical double-wedge air-
foil section, constant-thickness-ratio delta plate, discussed
in the body of this report, is an example of a treatment of a
singularity. In this case, although the solution is singular,
adequate accuracy is obtained by the difference solution if
ten equal intervals are used.



APPENDIX D

DEFLECTION AND STRESS EXPERIMENTS ON SOME TRIANGULAR CANTILEVER PLATES

Test specimens.—The specimens tested were: (1) a 45°
right-triangular plate clamped along one leg and (2) a 60°
right-triangular plate clamped along the longer leg. Each
specimen, cut from 24S-T4 aluminum-alloy sheet of 0.250-
inch thickness, had a length perpendicular to the clamped
edge of 30 inches.

Method of testing—Figure 12, a photograph of the test
setup, shows the methods of clamping, loading, and measure-
ment of deflections. A 1,000,000-pound clamping load (held
constant during the test) was applied to the root area of each
specimen and a uniform load of 0.204 psi was applied by
2-inch washers giving a tip deflection in each case of approx-
imately £ inch. :

The deflections were measured by dial gages placed at the
points indicated in figures 2 and 3.

Stresses were obtained from the 45° specimen only. On
this specimen, 13 resistance-wire rosette strain gages were
placed at the points indicated in figure 5. The plate was
loaded with 2-inch washers in four increments of 0.0847 psi
per increment and the maximum tip deflection was 1.13
inches. Readings of all the strain gages were recorded at
each increment of loading.

Analysis and discussion of data.—The deflection w was
plotted in figures 2 and 3 in terms of the nondimensional

Fiaure 12.—Deflection test setup of the 45° delta plate under uniform
load.
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parameter wD/plt, in which the elastic constants were taken
as £=10.6X10° psi and “:%.
gage forces reduced the tip deflection of the plate by approx-
imately 2 percent; however, since this error is of the same
order of magnitude as that in the material properties and
from other sources, no corrections are made in the results
presented. '

The readings of each of the 39 individual strain gages were
plotted against load, and the slope of each of the resulting
linear curves was taken as the average strain per unit load
of the individual gage. The principal stresses were then
calculated and plotted in figure 5 in terms of the nondimen-
sional parameter ot?/pl?.

It was found that the dial-
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